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SINGULARITIES OF THE ANALYTI-‘(:‘_ TORSION

MICHAEL S. FARBER

1. Introduction

A construction, invented by D.B. Ray and LM. Singer [23],
[24], uses zeta-functions of Laplacians to assign to an elliptic -com-
plex (equipped with an inner product) a positive real number p, called
analytic torsion. Ray and Singer themselves considered the analytic
torsion for the De Rham and Dolbeaut complexes. It was A.S.Schwarz
[26] who first studied the analytic torsion for general elliptic complexes.
It is clear that the theory of analytic torsion in this generality has po-
tentially a very wide field of possible applications in algebraic geometry,
complex analysis and in mathematical physics. l

A remarkable theorem, which was conjectured by Ray and Singer
[23] and then proven later by J.Cheeger [6] and W.Miiller [19], states
‘that in the case of a De Rham complex, twisted by an orthogonal repre-
sentation, the analytic torsion coincides with the classical Reidemeister-
Franz-De Rham torsion, constructed using “finite”information on the
manifold (namely, its cell decomposition). A more general theorem re-
lating analytic torsion of the De Rham.complex to the R-torsion was
found recently by J.-M.Bismut and W.Zhang [5].

Suppose now, that the original elliptic complex is being deformed:;
this means that the differential operators, forming the complex, vary
with a parameter ¢, where t € (a,b). Then the analytic torsion p(t)
will be a function of the parameter ¢. Even if the deformation of the
differentials is analytic, the torsion p(¢) will in general have singular-
ities (zeros and poles). The nature of these singularities is related to
changes in the cohomology. In fact, the beautiful geometrical picture
of the analytic torsion, suggested by D.Quillen [22] (cf. also [3]), con-
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sists in understanding it as a factor, which smooths the metric on the
determinant line bundle coming from the Hodge decomposition. This
shows that the problem of describing the singularities of the torsion is
in some sense equivalent to the problem of describing the changes in
cohomology which occur in the course of the deformation.

To study deformations of elliptic complexes we use in this paper the
germ-complez of the deformation - a construction, which incorporates
infinitesimal information about the deformation and allows one to view
a single complex instead of a family of complexes. A similar idea was
first exploited in [8] in order to describe in homological terms the jumps
of the eta-invariant. It is shown in the present paper, that the coho-
mology of the germ-complex is finitely generated, if understood as a
module over the ring, O, of germs of holomorphic curves in C (with
respect to pointwise addition and multiplication). The ring O is a prin-
cipal ideal domain, and thus the cohomology of the germ complex can
be decomposed into its free and torsion parts. In Theorem 2.8 it is
shown that the rank of the free part of the germ-cohomology is equal
to the dimension of the cohomology at generic points, and a precise
relation is found between the cohomological jump and the torsion in
the germ-cohomology.

As a consequence of this theorem we obtain Morse inequalities for
deformations of elliptic complexes. These inequalities generalize Theo-
rem 4.13 of [27] on upper semicontinuouty of dimensions of kernels of
elliptic operators. Note also, that deformations of complex structures
correspond to deformations of the Dolbeaut complex of a particular
form; knowing this, one may easily deduce some theorems of T. Ko-
daira [14], Theorem 4.4, Theorem 7.8, and Theorem 7.13 from our
Morse inequalities.

An important technical result, which is proven in the paper, is a
Hodge decomposition theorem for the germ-complex; the proof of this
theorem is based on the Rellich-Kato theorem on perturbations of self-
adjoint operators.

Another interesting object which can be associated w1th a deforma-
tion of an elliptic complex is the spectral sequence of the deformation;
cf. §6. In terms of this spectral sequence, one defines two numbers: the
@ — torsion of the spectral sequence, and the x¥ — Euler number of the
deformation, cf.§2. The latter can be expressed as a sum of jumps of
the derived Euler characteristic (introduced by Bismut and Zhang [5])
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of the terms of the spectral sequence. The following statement, describ-
ing the singularity of the analytic torsion as a function of a parameter,
is the main result of the paper. 5

Theorem. Let (C*(€),d;) be a deformation of an elliptic complex
(cf. §2 for the definition) defined for t € (a,b). Then for any.ty €
(a,b) there exist § > 0 and a real analytic function f(t) defined for
t € (to — 0,ty + 0) such that for all t € (ty — 8,t5 + 6), t # to, the
analytic torsion p(t) is given by the formula

p(t) = 0-|t— to] "X p(to) exp((t — to) f(t)),

where x is the Euler number of the deformation and 0 is the torsion of
the spectral sequence, associated with the deformation; cf. §6.

This theorem follows immediately from Theorems 5.3 and 6.6 in the
text of the paper.

As an application, we consider in §7 deformatons of flat vector bun-
dles. It was shown in [8], that in this case, the germ-cohomology can
be computed as usual cohomology of a local system determined by the
deformation of the monodromy representation. We also observe some
duality relations which exist in this situation because of the existence
of the Hodge star operator.

In the last section §8 we consider a few other examples. First we
point out some interesting relations between the point of view of the
present work and the Alexander modules, which are among the most
important tools of the knot theory. Using this connection we construct
a curious example of a flat vector bundle which has no semi-simple
deformations. We also discuss a recent result of A.Dimca and M.Saito
on deformations of the Koszul complex, which exhibits entirely different
properties.

It is a great pleasure to acknowledge my deep appreciation to Jerome
Levine; the paper was considerably influenced by communication with
him. Also, I am very thankful to M.Braverman and S.Shnider for a
number of discussions of some parts of this work, and to V.Matzaev
for explaining to me the analyticity property of the parametrix and the
zeta-function with respect to a parameter.

This work was initiated while the author was visiting the University
of Sydney.



SINGULARITIES OF THE ANALITIC TORSION 531

2. Deformations of elliptic complexes
and their germ-cohomology

In this section we will study families of elliptic complexes obtained by
deforming the differentials of a given elliptic complex. The first ques-
tion which arises is about variation of the homology: it becomes to be
a function of the parameter whose values are finite-dimensional vector
spaces; the dimension of these vector spaces jumps at certain values of
the parameter. To study those jumps we consider the deformation as
a single complex of modules over the ring O of germs of holomorphic
curves; we show that the cohomology of this complex (which we call
germ-complez) determines the behaviour of the cohomology of the ellip-
tic complex for all values of the parameter in a neibourhood of the fixed
value. As a consequence we obtain Morse inequalities for deformations
of elliptic complexes.

We will see later that information contained in the germ-complex
is also useful in describing the analytic torsion as a function of the
parameter.

2.1. Consider a closed smooth manifold M, complex vector bundles
E over M, 0 < i < N, and a set of first order linear differential
operators,

d':C®(&) = C®(&y1),  0<i<N,

(where C(€) denotes the space of smooth sections of £) which form
an elliptic complez. This means that
(1) the sequence

0= 0P (&) L 0=(E) L - = C®(En) = 0

is a complex, i.e., dit! o d* = 0; and
(2) the associated symbol sequence

o 0 o 1 - N—1
0—>7r*80——(f—)>7r*81 (d)>... (d )>7r*5N—>0

is exact in each fiber; here 7 : S*M — M denotes the natural projection
of the unit sphere subbundle of the cotangent bundle of M.

An elliptic complex as above will be denoted (C*(£),d).

With an elliptic complex one associates its cohomology

H{(C*(£),d) = ker (d"t")/im (d*),
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which is (as it is well-known) a finite dimensional vector space over C.

2.2. Deformations of elliptic complexes. By a deformation of
an elliptic complex (C*(£),d) we will understand an object consisting
of a family of elliptic complexes (C*(£),d;) given on the same set of
vector bundles, where the differential operators

di: C®(E;) = C®(Eip)

depend on a parameter ¢ varying within an interval (—¢, €) such that:

(1) (C=(£),d;) is an elliptic complex for any t € (—¢,€);

(2) for t = 0 we obtain the original unperturbed complex (C*°(£), d);

(3) for any 0 < i < N the first order differential operator di €
Diff, (&;, £;41) depends analytically on the real parameter ¢ € (—¢,€). In
other words, we suppose that the curve (—¢, €) — Diff1(&;, £i1), given
by di, is analytic. The precise meaning of analyticity of a family of
operators will be described below in subsection 2.4. Intuitively, a curve
of differential operators is analytic if all coefficients are real analytic
functions of the parameter.

As an example consider the De Rham complex (A*(M),d) of the
manifold M. Let w be a fixed closed 1-form on M. S. P. Novikov [20]
studied the following deformation

d=d + twA- , teR

In the case where the form w is exact, w = dh, h being a Morse function
on M, this deformation was studied by E.Witten [28].

Deformations of the Dolbeaut complex, restricted to lie in differ-
ent subalgebras of the algebra of differential operators, correspond to
a number of different deformation problems in complex analysis and
algebraic geometry; cf. [14], [1], [22], [13]. ‘

2.3. The aim of this and of the following subsection is to make pre-
cise the notion of analyticity used in 2.2 in the definition of deformation
of elliptic complex.

First we recall some standard definitions. Let {2 be an open subset
of C and let V be a complex topological vector space. A function
f:Q — V is said to be weakly holomorphic in Q if vf is holomorphic
in the ordinary sense for every continuous linear functional v on V.
The function f : Q — V is said to be strongly holomorphic in 2 if the
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limit
Lo F) = f()
:, woz W — 2
exists (in the topology of V) for every z € Q. It is known that the above
two notions of analyticity actually coincide if V' is a Frechet space; cf.
[25 (Chapter 3)].

A function f : (a,b) — V defined on a real interval (a,b) with
values in a Frechet space V is said to be analytic (or real analytic or
holomorphic) if it is a restriction of an analytic function Q — V defined
in a neighbourhood Q C C of the interval (a, b).

We will mainly consider analytic curves in spaces of smooth sections
of vector bundles. Let M be a compact C*° Riemannian manifold (pos-
sibly with boundary) and let £ be a Hermitian vector bundle over M.
For any integer k symbol H(€) will denote the corresponding Sobolev
space (defined as in Chapter 9 of [21]). Recall that the Sobolev spaces
Hi(€) with k € Z form a chain of Hilbertian spaces (in the terminology
of [21]), which, in particular, means that #, (&) is embedded into H;(£)
for k > I (as a topological vector space) and the intersection of all the
spaces H(€) coincides with H,(£) = C®(M).

Definition. Let f : (a,b) — C®(M) be a curve of smooth sections;
we will say that f is analytic if for any integer k the curve f represents a
~ (real) analytic curve considered as a curve in the Sobolev space H;(£).
In other words, for any & there is a neighbourhood U, C C of the
interval (a,b) and an analytic function fy : Uy — Hi(E) extending f.

Note that any curve f : (a,b) — C°(M) which is analytic by view-
ing C*(M) as a Frechet space, will be obviously analytic in the sense
.of above Definition. The converse is also true, although the proof of
this fact (shown to me by V.Matsaev) is not elementary; it uses inter-
polation theory of Hilbert spaces. Since we wish to avoid these analytic
subtleties, and since the above definition is the most convenient and
entirely sufficient for our purposes, we will accept it and never use the
equivalence of the above two definitions in the present paper.

Suppose that £ and F are two Hermitian vector bundles over M.
Then any differential operator D : C®°(£) — C®(F) of order £ defines
a bounded linear map of Sobolev spaces Hy(E) — Hy_e(F) (where
k > £) and thus D maps analytic curves in C*(€) into analytic curves
in C®(F).

Let O denote the ring of germs of analytic curves in C. Addition
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and multiplication are given by pointwise operations. O is a discrete
valuation ring; its maximal ideal m = () C O coincides with the set
of all functions vanishing at the origin. The generator of the maximal
ideal is the germ of the function f(t) = t.

For a vector bundle £ let OC™(£) denote the set of germs of analytic
curves in C*(£) in the sense described above. Then the pointwise
product of curves makes OC*(£) to be an O-module.

2.4. We will give now definition of analyticity for families of linear
differential operators.

Suppose that £ and F are two vector bundles over the manifold
M, and D, € Diff,(£,F) is a family of linear differential operators of
order £, depending on a real parameter ¢t € (a,b). Let J%(£) denote
the jet bundle of order ¢; cf. [21 (chapter IV, §2)]. Then by Theo-
rem 1 on page 61 of [21], the set Diff ,(£,F) can be identified with
C*(Hom(J*(€),F)). The latter is the set of smooth sections of a vec-
tor bundle; therefore we can consider analytic curves in this space of
sections using the definition of analyticity given in 2.3.

We accept the following definition: a curve of linear differential op-
erators (a,b) — Diff,(€,F) is said to be (real) analytic iff the corre-
sponding curve of sections of the bundle Hom(J*(£), F) is analytic.

The main property of analytic families of operators D;, which we
will constantly use, consists of the following: for any integer k£ > £ the
family of bounded linear operators D; : H;(E) = Hi—e(F) depends
analytically on the parameter ¢ (i.e., defines an analytic curve in the
Banach space of bounded linear operators H(E) — Hy—o(F) with the
operator norm).

From the above remark it follows that i#f f : (a,b) — C*™(€) is
an analytic curve of smooth sections, and D : (a,b) — Diff (€, F) is
an analytic curve of linear differential operators, then the “evaluation
curve”t — Dy(f;) is also analytic.

2.5. The germ-complex. Suppose again that we are given an
elliptic complex

0 C®(&) 5 C=(E) L ...C®(En) = 0

over M. A deformation of this complex (defined as in 1.2) determines
a one-parameter family of chain complexes of global sections

0— C(&) 25 C=(&) 5 . ..C®(Exn) = 0
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which can be understood as the following single complex of O-modules
and O-homomorphisms

(1) 0= OC=(E) B OC®(E) S ...0C™(Exn) = 0;

the differential d : OC>(&;) = OC> (&) is given by

d(s)(t) = dy(s(t))-

where s : (—¢,€) = C™(E;) is a curve of seetions.

We will call (1) the germ-complex of the deformation.

Cohomology of complex (1} in dimension i, denoted H (OC>(E),d),
will be called the germ-cohomolody or O-cohomology of the deforma-
tion. Note that the O-cohomology is an @-module.

2.6. Finiteness Theorem. The germ-cohomology modules of a
deformation of an elliptic complex over a compact manifold are finitely
generated as modules over O.

The proof will be given later in section 3.3.

It was observed above, that O is a discrete valuation ring. Thus, any
finitely generated module X over O can be represented as a direct sum
F &7 of a finitely generated free module F' and the torsion submodule
7 C X. Rank of X is defined as the rank of F. Any finitely generated
torsion O-module 7 is a direct sum of eyclic modules (i.e., modules of
the form O/t"O, where n € N) and this direct sum representation is
unique. We will denote by g(7) the number of the cyclic summands
contained in the decomposition of 7.

2.7. Definition. Let 7° denote the torsion submodule of
Hi(OC®(E),d), the germ-cohomology module of the given deforma-
tion. The Euler number of the deformation is defined as

(2) x = ¥ (~1)dimg 7"

i>0

From the finiteness theorem it follows that 7¢ is finitely dimensional
as a vector space and so the above definition makes sense.

We will see later in §5 that this number y determines the singularity
of the analytic torsion as function of the parameter.

Remark. It is clear that when a deformation is defined for all values
of a parameter varying within an interval, any point of this interval can
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be fixed and the complex of curves’ germs at this particular point can
be studied (instead of the origin ¢ = 0 as above). In this case the ring
O must be substituted by the ring of germs of holomorphic curves at
that point. Thus the notions of the germ-cohomology and the Euler
number x of the deformation introduced above are relative and can be
defined with respect to any point of the interval of the values of the
parameter. ‘

Our immediate task now is to show that the germ-cohomology of
the deformation determines the cohomology of all elliptic complexes
(C>(£),d;) for all values of ¢ close to 0.

Theorem 2.8. Suppose that (C®(£),d;) is a deformation of an
elliptic complex over a closed manifold M, where t € (—¢,€). Then

(a) there exists a positive § < € such that for all values of the pa-
rameter t satisfying 0 < [t| < § the dimension of the cohomology of the
elliptic complex (C*(£),d;) (where t is fized) is equal to the rank of
the O-cohomology module: ’

dimg H{(C®(€),d,) = rko H/(OC®(E),d)-
(b) the dimension of the cohomology of the undeformed complex
dim H(C*®(£), dy)

is equal to
tko HH(OC®(€),d) + p(*) +p(r™*),

where ¢ denotes the torsion submodule of H:(OC>(E),d).

Note that the statement (1) of the Theorem 2.8 describes the coho-
mology of the elliptic complex (C*°(€),d;) for generict.

The proof of Theorem 2.8 is given in section 4.

We will discuss in section 8 some examples of deformations of Koszul
complexes which exhibit entirely different behaviour.

As an immediate consequence of Theorem 2.8 we obtain Morse in-
equalities for deformations of elliptic complexes: :

2.9. Theorem (Morse inequalities). Assume that a deformation
of an elliptic complez (C*™ (), d;) over a compact manifold is given. Let
b;(t) denote the Betti numbers dim H*(C*® (), d;) of the elliptic complex
as functions of the parameter t varying in (—e,€). Then there ezists §
with 0 < § < € such that b;(t) assumes the same constant value for all
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t € (—4,8), t+#0, and for those t the following inequalities hold

3

> (=1)7bi(t) gzi(—l)fbi_j(O) i=0,1,2,....

=0

This theorem generalizes Theorem 4.13 of [27] on upper semicontin-
uouty of the kernels of elliptic operators. Some theorems of K.Kodaira
[14], Theorems 4.4, 7.8, 7.13, follow from Theorem 2.9.

2.10.  Following Bismut and Zhang [5] we will associate to an
elliptic complex (C*(£),d) the number

X = i(—l)iidimﬂi(cw(rf),d),

i=0

called derived Euler characteristics.

Given a deformation (C*(£), d;), this number x' = x/(¢) will depend
on the parameter ¢, —e <t < e. It will have a jump at ¢ = 0, and
Theorem 2.8 gives the value of the jump:

forall -d <t <4, t#0.

2.11. Definition. A deformation of an elliptic complex
(C>=(€),d;), where —e < t < ¢, is said to be semi-simple if all tor-
sion homology modules 7¢ of the germ-complex are semi-simple; the
last condition is equivalent to either of the conditions:

p(r?) =dime(7')  and  t-7'=0

for all 7. From Theorem 2.8 and the above remark we obtain:

2.12. Corollary. In the semi-simple case, the FEuler number x of
deformation equals to the jump of the derived Euler characteristics. In
other words,

x = x'(0) = x'(9)
for nonzero  t close to 0.

" I want to emphasize that the previous formula does not hold for
deformations which are not semi-simple, as easy examples show. A
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general formula for the number x will be described in 6.3; it involves
the derived Euler characteristics of a spectral sequence associated with
the deformation of the elliptic complex.

One may suspect that semi-simple deformations must be generic.
But surprisingly it is not true: in §8 we will describe an example in
which all deformations (of a flat vector bundle) are not semi-simple.

3. Parametrized Hodge decomposition

In this section we study the decomposition of the space of germs of
curves in an elliptic complex which is quite analogous to the Hodge
decomposition. It has however one main difference from the classical
situation which consists in the necessity to use the periodic closure &l;
the reason for this is the fact that the set of germs of analytic curves O
is a ring but not a field. The arguments of the proof are based on the
theory of perturbations of self-adjoint operators, described in the book
of T. Kato [12]. We conclude this section by a proof of the finiteness
theorem 2.6.

3.1.  Consider a deformation (C*(£),d;) of an elliptic complex
over a closed manifold M, where ¢t € (—¢,¢), and the corresponding
germ-complex (1)

0= OC®(E) L 0C=(E) L ... -5 OC®(Ex) — 0.

Suppose now that each vector bundle &; is supplied with a Hermitian
metric, and a Riemannian metric is fixed on M. Then there is a natural
scalar product on the spaces of smooth sections C>(&;): for sections
s, 8' € C*(&;) their scalar product is given by

(s,8") = /(sz,sg)d:c.

M

Extending this scalar product pointwise on the space of of curves we
obtain the Hermitian pairing of O-modules

(3) (,): OC®E)R®OC®(E) - O.

Each operator di : C®(&;) = C*(£;.1) has adjoint (with respect to
the Hermitian scalar product mentioned above) which we will denote

(5; H Coo(gi_*_l) - Coo(gz)
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As above, the family of operators §¢ defines the operator é acting on
curves

§:0C%(E) » OC%(Ewa),  8(s(t))(2) = 8i(s(1)) (=),

where s(t) € C*(€;) is a holomorphic curve of smooth sections defined
for —e < t < ¢. We will also need the Laplacians

A = dé+6d: OC®(E) = OC®(E).

As usual, elements of the kernel of the Laplacian will be called harmonic
forms; the set of all harmonic forms in @C*(€;) will be denoted Har'.
Note that the operators A,J,S are (J-homomorphisms; in particular,
we see that the space of harmonic forms is an O-submodule.

Now we will introduce the algebraic notation which will be used later
in the Hodge decomposition theorem for curves. For an O-submodule
X of an O-module Y the symbol €I(X) will denote the pure submodule
generated by X, i.e., the set of all elements y € Y with the property
that fy belongs to X for some nonzero f € O.

The following is the main result of this section.

3.2. Theorem. Suppose that a deformation (C*(E),d;) of an
elliptic complex over a closed manifold M is defined for t € (—¢,¢).
Then the following decomposition holds:

OC®(&;) = Har' @ €l(d(OC®(&;_1)) & €l(F(OC™(Eizr)),

and the terms of this decomposition are orthogonal to each other with
respect to scalar product (3). Moreover, the O-module Har* of harmonic
forms is free of finite rank while the factormodules

7 = CUd(OC®(£;-1))) /d(OC®(£;1))

and

Qi = Cl(g(ocoo (5i+1 )))/5(00oo (5i+1))

are finitely generated torsion O-modules.

We will need the following lemmas.

3.3. Lemma. Let £ be a Hermitian vector bundle over a compact
Riemannian manifold M without boundary and let D, € Diff ,(€,&) be
an analytic (in the sense of 2.8) family of elliptic self-adjoint operators
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of order £ > 0 defined for t € (a,b). Suppose that ¢, : (a,b) = C*(£)
are two curves such that Dy(¢(t)) = ¢(t) for any t € (a,b), and it is
known that the curve 1 is analytic in the sense of definition 2.3, while
the curve ¢ is analytic in a weaker sense - as a curve in the Hilbert
space Ho(E) = L*(E). Then the curve ¢ is analytic in the sense of
definition 2.3 as well. B

Proof. Choose a point ¢, € (a,b) and an integer k£ > 0. It is enough
to prove analyticity of the curve ¢ : (fo — &,%p + J) = H(€) for some
small § > 0 (the restriction of the original curve ¢ onto a neighbourhood
of t,, considered as a curve in the Sobolev space Hi(£)).

Let 7 denote the orthogonal projection of Ho(€) onto ker(D, ) C
Heo(€). The operator

Di+m:  Hyl€) = Hiel)

is continuous, analytically depends on the parameter ¢, and is invertible
- for t = ty. Thus it is invertible for ¢ € (fy — J,to + &) for some & > 0.
We have

" (D, + m)((8)) = »(t) + m(&(2)).

We claim that the right hand side of this equation is a curve ana-
lytic in the Sobolev space Hy_((£). In fact, the first summand (¢)
is analytic in any Sobolev space by the assumption, while the second
summand 7(¢(t)) belongs to a finite dimensional subspace ker D;,, and
it is given that it is analytic as a curve in Hilbert space L?(&) = Ho(£).
Since all linear topologies on a finite dimensional vector space are equiv-
alent, we conclude that the curve 7(¢(¢)) is analytic as a curve in
Hi—e(€)-

Combining the remarks of the two previous paragraphs, we obtain
that the curve ¢ : (ty — 8,1y + 8) = H(€) is analytic.

3.4. Lemma. Let £ be a Hermitian vector bundle over a compact
Riemannian manifold M without boundary and let D, € Diff,(£,£) be
an analytic (in the sense of 2.3) family of elliptic self-adjoint operators
of order £ > O defined for t € (a,b). Suppose that ker D; = 0 for all

€ (a,b). If ,% : (a,b) = C®(E) are two curves such that D,(¢(t)) =
P(t) for any t € (a,b) and the curve 1 is analytic (in the sense of
definition 2.83), then the curve ¢ is also analytic.

Proof. Fix an integer k. Since ker D; = 0, the operator D; defines
a linear homeomorphism D; : H+¢(E) = Hi(E) (by the open mapping
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theorem, cf. [25 (p.47)]) which depends analytically on t. Thus it
follows that ¢(t) = D;*(1(¢)) is an analytic curve in the Sobolev space
Hi+1(E). Since this is true for any k, the statement follows.

3.5. Proof Theorem 3.2. First we want to show that there is
an orthogonal decomposition ‘

(9) - OC™(&;) = Har' @ Cl{A(OC™(E)).
Consider the family of Laplacians
At : Coo(gl) - Coo(gz)’ (‘-6 <i< 6), where At = dt(st + (Stdt,

acting on the Hilbert space H = Ho(£) = L*(£). It is a holomorphic
family of self-adjoint elliptic operators in the sense of subsection 2.4; it
is also a self-adjoint holomorphic family of type (A) in the terminology
of T.Kato; cf. Chapter 7, §2 of [12]. The domain D C H of A, does
not depent on ¢; it coincides with the Sobolev space Hz(E).

By Theorem 3.9 from [12], chapter 7, §3, we obtain the existence
of parametrized spectral decomposition. The latter consists in a se-
quence of holomorphic curves ¢,(t) € D C H (which are holomorphic
with respect to the metric of H = Ho(£)), defined for ¢ € (—¢,¢),
for any n > 1, and a sequence of real valued holomorphic functions
An(t), n>1, t € (—¢¢), such that for any value of ¢ the numbers
{A.(t)} represent all the repeated eigenvalues of A;, and {¢,(¢)} form a
complete orthonormal family of associated eigenvectors of A;. Observe
that ¢,(t) are smooth, ¢,(t) € C*(&;) C D C H, by the regularity
theorem for elliptic operators.

Now Lemma 3.3 (applied to the operators A; — A,(t)) implies ana-
lyticity of the curves of eigenfunctions ¢,(¢) in the strong H..(£)-sense.

From the general theory of elliptic operators we know that for any
value of t the sequence of numbers {),.(¢)} tends to infinity. Thus there
may exist only finitely many integers n with A,(0).= 0. Suppose that
An(t) and ¢, (t) have been numerated in such a way that the following
hold: o

(i) A(@) =0  for 1<n< Ny

(i) Au(t) =t (t) with v, >1, X (0)#0 for Ny <i<N;

(iii) A,(0) #0 for n > N.
Any analytic curve t — f;, f € OC>®(E;) can be represented in the
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form
fe=)_Bat)at),  Bn€O,

where the series converges in H = Ho(€). Then

Aify = Ba(t)Xa(t)n(t)-

Thus A.f; = 0 if and only if all coefficients 5, vanish for n > Ny. It
means that the germs of curves

¢1(t)1 ’¢2(t)’ ce 7¢No (t)

belong to the space harmonic forms Har’ and furnish a free O-basis of
Har'. This proves one of the statements of Theorem 3.2.

Suppose that a germ of a holomorphic curve f : (—¢,€) = C®(&;)
belongs to the image of A. Then obviously:

(@) (f,#) =0 forany ¢ € Har’ and

(b) (f, ¢x) is divisible by t** in O for any Ny < k < N,
where the scalar product (3) has been used.

Conversely, suppose that we are given an analytic curve f : (—¢€,€) —
C>(&), [ € OC=(&;), which satisfies the properties (a) and (b).
Then in the decomposition f; = 3 3,(t)¢,(t) we have: (1) S,(t) =0
for n < Ny and (2) B,(t) is divisible by A,(¢) in O for Ny < n < N.

Consider ”
n n t
-3 20w+ 3 20

n>Ng

We claim that g is holomorphic as a curve in Ho (&), i.e., g € OC>(E;).
In fact,the first sum g, (¢) is finite and it is holomorphic by condition (b).
Considering the second sum (denoted by g (%)), note that A,(0) > 0 for
n > N and A,(0) — oo. From the analyticity of A; it now follows that
there exit positive numbers a and § such that A, (t) > a for alln > N
and |t| < & (here one may use Theorem 2.5 of [11], for example). Thus,
we see that the second term g»(t) converges as quickly as the series for
f in any Sobolev space Hy(&;); thus g, is a curve with values in C*(£;),
continuous in the topology H(E;).

Now we want to show that g»(f) is analytic in Ho(&;) for small £.
For any value of the parameter ¢ let 7, denote the orthogonal projec-
tion (with respect to the L? = Hy-scalar product) onto the subspace
generated by the eigenfunctions ¢,(t) with n = 1,2,..., N. Denote
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Ly, = Ay + m. We have Ly(g2(t)) = f(¢) is a holomorphic curve in
Hoo(E;) and ker L, = 0. Thus we may apply Lemma 3.4 to conclude
the analyticy of g,(¢). Note, that L, (being a sum of the Laplacian with
a finite-dimensional projector, which depend on ¢ analytically in the ob-
vious sense) is a pseudo-differential operator; but all the arguments of
the proof of Lemmas 3.3 and 3.4 still work.

Thus, we obtain that the orthogonal complement of Har* in OC>(€;)
coincides with €I(A(C>(E;))) (which proves the decomposition (9))
and the factor-space €I(A(C>®(E;)))/A(C®(E;)) has finite dimension
equal to

N
Z V.
k>No

To complete the proof we need to show that
(100 QA(C™(E)) = €Ud(OC™(Ei-1))) ® EUS(OC™(Eirs)))-

If f € ¢l(A(C>(E,))) then tif = Ag for some positive integer ! and
g € (C*(&;)). The curves hy = d6g and h, = ddg are orthogonal to
each other and

E£,8f) = (hi,h1) + (ha, ha).

Since the right-hand-side is O(t¥) we obtain that h; = t'f;, j=1,2
and f; € OC*(£;). It follows that

fi € AA(OC™(Eir1)),  fo € EUH(OC™(Eira)))

and f = f; + fo. This proves that right-hand-side of (10) is contained
in its LHS.

Let us prove the inverse inclusion. If f € €l(d(OC>(£;_1))) then we
can write t f = dg for some g € OC®(&;_,)). By (9) we may represent
g = h+ g: where h is harmonic and t°g; = Ag,. Then t*f = Adg,
which proves that f € €I(A(OC™>(E;))). Similar arguments applied to
the second summand give the proof of (10).

Since im(A) C im(d) @ im(3), it follows from (10) that there is an
epimorphism

A(A(OC™(£)))/A(OC®(E)) = ' @ @'

and thus 7¢ and g* are finitely dimensional.
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3.6. Proof of the Finiteness Theorem 2.6. Consider the
action of the- differential d of the chain complex (1) on the terms of
the orthogonal decomposition of OC>(E;) given by Theorem 3.2. It
obviously vanishes on the first two terms

(11) .~ Har® @ ¢l(d(OC™(&iy)),

and it is monomorphic on €/ (6(OC*=(Eir1)), since from ¢ f = g and
df =0 it follows that dbg = 0 and

0 = (ddg,g) = (8g,89);

thus dg = 0 and f = 0.

We obtain that (11) comprise the set of cycles of complex (1). Since
the set of boundaries is obviously d(OC™(£;_)) we find that the homol-
ogy of (1) is Har’ @ 7°. It is finitely generated over @ by Theorem 3.2.

4. Proof of Theorem 2.8

4.1. As it was shown in the proof of Theorem 3.2, the O-module
Cl(lm ))/ im( ) has a very clear-description in terms of the paramet-
rized spectral decomposition of the Laplacians, given by the Theorem
of T. Kato on perturbations of self-adjoint operators. Our aim now is
to find the relations between this module and the modules 7¢ and p'.
These relations will allow us to study the behaviour of the cohomology
and the analytic torsion as functions of the parameter. '

To simplify the notation, we will denote in this section C* =
OC™(€;) and will drop the tilde sign from the notation of d and 8.
Thus we have .

r = QCT/ACTY), g = EE(CT) /6O,
Denote also V
X' = el(d(C*1))/ds(CY), Y= el(s(C™))/6d(CY).
4.2. Proposition.(a) There is an e-‘zact sequence of O-modules

0=t 3 x Arin0
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where ‘the homomorphism « sends the coset of a class z €
€l(6(C*Y)) into the coset of dx; the map B is the natural factor-map;
(b) Similarly, there is an ezact sequence

07 L yi g 50

with the map o being induced by 6 and with B' being the obvious factor-
map; (c) For every i there is a canonical nondegenerate pairing

i }:Ti X Qi_l - M/O,

where M denotes the field of fractions of O, i.e., the field of germs of
meromorphic curves, this pairing is O-linear with respect to the first
variable and O-antilinear with respect to the second variable. In parti-
calar, 7* and o1 are isomorphic as O-modules.

Proof. To prove (a), note that the kernel of 3 is 6(C**)/4d(C*)
and so it is enough to show that the homomorphism d induces an
isomorphism

0l = €l(6CH)/6CT — d(CPY)[dS(CH).

From Theorem 3.2 it follows that it is an epimorphism. To show that
it is a monomorphism, suppose that z € C*! satisfies t*z = dz' and
dz = déy for some z', y € C?and k > 1. Then dé(z' —t*y) = 0 which
implies that 6(z' — t*y) = 0 and thus z = Jy represents zero element
in p71.

Statement (b) follows similarly.

To construct the form

- {, }:'ri x o1 - M/O,

suppose that we are given z € Cl(d(Ci;l)) C C' and y € €l(6(CY)) C
Ci~1. Then t*z = dz' for some z' € C*~1. We define

(12) {z,y} =t7*(z',y) e M/O,

where we use the scalar product (3). Obviously, {z,y} depends only
on the class of y in p*t. If t'y = §y’, where ¢’ € C%, then {z,y} =
t~'(z,y'). From this formula it follows that {z,y} depends only on the
coset of & in 7¢. Thus the form (12) is correctly defined.
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Let us show that it is nondegenerate. Suppose that z € €l (d(C’i_l))
and {:z:,y} =0 € M/O for any y € p'~!. Write t* = dz’, where z' €
C*~!. We may assume that the number k is as small as p0331b1e Using
the decomposmon of Theorem 3.2 we may arrange that z' € €I(6(C"?)).
From our assumptions it follows that t=*(z’,y) is a holomorphic curve
for any y € €l(6(C?)). In particular, we obtain that the curve t~%(z', z')
is holomorphic. If (z',z') is divisible by ¢ in @, then z' is divisible by
t in C*7'. Thus, from the minimality of k it follows that & = 0 and so
T represents zero in 7°.

Slmllar arguments show that if y € o*~! satisfies {z,y} = 0 for any
z € 7%, then y = 0. This completes the proof.

We need to determine the type of the extensions (over O) which
appear in Proposition 4.2. We will show that they are "maximally”
nontrivial. In a more precise manner it is expressed in the following
statement; here u(X) denotes the number of cyclic modules in the
decomposition of the O-module X.

4.3. Proposition. The following equalities hold:

p(XY) = p(r) = pe™),  wl¥?) =pi"*) = ple).

Proof. Let us start from a general remark. As it is well-known,
given an extension of @-modules

02A3B5C 0,
its type is completely determined by the linear map
f:C — A,

where *C denotes the set of all ¢ € C with tc = 0, while A; denotes
A/tA. The map f is defined as a!(¢37'(c) for ¢ € Cj it is correctly
defined. '

Consider the extension, which appear in Proposition 4.2(a). The
corresponding linear map

[ ) —;(a"‘l)t

act as follows. Suppose that 2 € €I(d(C*™!)) is an element with tz =
dz', where ' € C*'. In fact by Theorem 3.2 we may assume that
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z' € €1(6(C?)). We will also assume that z represents a nonzero element
in 7° and thus the scalar product (z’,z') is not divisible by ¢ in C*~!.

The image of the class [z] € *(r*) represented by z under the map
[ is obviously equal to the class in (¢*'); represented by z'. Thus
the product {[z], f([z])} is equal to ¢~!(z',2') € M/O; it is nonzero if
[z] # 0 and so f is a monomorphism. On the other hand, by Proposition
4.2.(c) the modules 7¢ and ¢*~! are isomorphic and therefore the vector
spaces (7%) and (p*~!), have equal dimensions. This shows that the
map f is an isomorphism.

Hence the proposition is proved.

4.4. Proof of Theorem 2.8. Suppose that (C>®(£),d;) is a de-
formation of an elliptic complex defined for —e < ¢t < e. Consider
the Laplacians A : C®(€;) — C®(&;) where i = 0,1,..., N and their
parametrized spectral decompositions: cf. proof of Theorem 3.2. Sup-
pose that the eigenvalues A, (¢) are numerated in such a way that they
satisfy conditions (i), (ii), (iii) introduced in the proof of Theorem 3.2.
Then from Hodge theory it follows that for any value of the param-
eter ¢ the dimension of the cohomology group H*(C*(£),d,) is equal
to the number of zero eigenvalues; if ¢ is close to 0, ¢ # 0, then this
number is precisely the rank of the module of harmonic forms Har®; the
eigenvalues \,(t) with n > N, are not zero for all 0 < |¢| < 4.

For ¢ = 0 the dimension of the cohomology space H(C*(£),d;)
is equal to the number N; cf. proof of Theorem 3.2. It is equal to
u(€l(im(A))) = p(X?) + p(Y?). Using Propositions 4.2 and 4.3 we
obtain

(XY =p(m),  p(Y") = p(r)

and thus;v
dim H'(C™(£), dy) = tko H(OC®(E),d) + p(r%) + p(r**?).

This completes‘the proof.

5. Behaviour of the analytic torsion

In this section we will study the analytic torsion for general elliptic
complexes; in this generality the analytic torsion was first studied by
A.S.Schwarz [26].
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We here consider analytic torsion of a one-parameter analytic family
of elliptic complexes and show that the analytic torsion as function of
the parameter has singularities whose type can be described by the
Euler number of the deformation defined in 2.7.

5.1. Let £ = @&}, be a graded vector bundle over a closed
manifold M and let (C*(M),d) be an elliptic complex; cf. 2.1. Here
d = (d*), where d* : C®(&;) — C*®(€i11) is a first order differential
operator. The analytic torsion of this elliptic complex is a positive real
number p € R, defined as follows.

Fix a Riemannian metric on M and a Hermitian scalar product on
each vector bundle &;; this defines the usual Lj;-scalar product in the
spaces C™(&;) of smooth sections. Let 8t : C°°(Ei41) = C(E;) denote
the dual of d*. The Laplacians

A; = éid + di-tei1 Coo(gl) — Coo(gl), 1=0,1,...,N

are elliptic self-adjoint non-negative operators. If A;1,Ai2,..., A,
are all the nonzero eigenvalues of A;, then one considers the zeta-
function defined for large ®(s) by the formula

oo

— —8
=2 N
=1

Using the asymptotic expansion of the heat kearnel one shows that
zeta-function has an anylitic continuation onto the entire complex plane
which is a meromorphic function regular at the origin; cf. [10]. Then
the analytic torsion p is defined as the unique positive root of

N

> (=

=0

l\DIb—i

Proposition 5.2. (A.S.Schwarz [26]) The analytic torsion p of an
acyclic elliptic complez (C*°(£),d) over an odd-dimensional manifold
M does not depend on the choice of the Riemannian metric on M and
Hermitian metrics on the vector bundles &;.

Independence on the Riemannian metric on M in the case of the De
Rham complex was proven by Ray and Singer [23 (Theorem 2.1)]. If
there is a nontrivial homology, the analytic torsion depends on the met-
ric. The general formulation of this result states that the Ray-Singer
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metric on the determimant line of the cohomology does not depend on
the Riemannian metric on the manifold; compare [4 (III, Th.1.18)] and
also [23 (Th. 7.3)].

The corresponding result is also true for general elliptic complexes;
note that the new element here is that we vary Hermitian metrics on
the vector bundles &; as well as the metric on M. However we decided
to impose for the sake of simplicity the acyclicity assumption in the
above Proposition.

The proof of Proposition 5.2 given below for completeness, repeats
essentially the arguments of [23] and [26].

Proof. Suppose that the metrics on M and &;’s vary within a real
parameter u. Then the scalar product in the space of smooth sections
C>(€&;) will depend on u. For sections s,s’ € C*(&;) we will denote
their new scalar product by (s, s'),, while (s, s'), will denote the original
undeformed scalar product. Then these two are related by

(S, Sl)u = (Ausy Sl)Oa

where A, : £; — &, is a zero order self-adjoint positive operator uniquely
determined by the variation of the metrics.
The dual differentials will now depend on the parameter u

8L 1 C®(Ei4y) = C=(E), where = 4, = AJ'6A,,

and so the Laplacians A;(u) will also depend on u. For large R(s) the
zeta-function can be written in the form

1 o0

i — ts—l Tr —tA;(u) dt

Gl 5) = g [ 7 T A)

Here ¢ *2{®) denotes the heat kernel of the Laplacian A;(u); for any

t > 0 it is an infinitely smoothing operator smoothly depending on u.
Consider the function

N
o(ut) = Do(-1)i Te(e™a0),
i=0 .
Then
ag(u’t) _ i i —tAi(u) A . o 6Az(u)
~5u = —tZ(—l)z’I‘r(e A;), where A; = R

=0
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Since 3;: = 0,X — X4, where X = A;lAu, we have

0A(u)

=do, X —dXé, + 6, Xd— Xé,d,
ou

and similarly to [23 (p.152)] one gets

Tr(e~tW§, X d) = Tr(e™*4+1 W46, X),
Tr(e™*4® X§,d) = Tr(e™*4,dX),
Tr(e 4@ dXs4,) = Tr(e "1 4,dX),

and therefore

ag(u,t) _ —tiTr( _tA‘(u)A X) — td—(i(—l)i Tr(e—tAe(u)X))
3u - i—0 ¢ ' B dt =0 .

Thus we obtain for large R(s) (cf. [2 (§9.6)]) that

YN o (—1)%i¢;(u, 5) _ M'[tF’(t))]

- = —sM[F(2)),
where N
F(t) = Z(— 1)* Tr(e‘m"(“)X).

Here M denotes the Mellin transform.
According to [10 (Lemma 1.7.7)], the function F(t) has for t — 0 an
asymptotic expansion of the form

F(t) = Zejtj—n/z.
j=0

Using Lemma 9.34 of [2] we conclude that M[F(¢)] is holomorphic at
s = 0 and its value there is equal to e,/,. Thus we obtain the following
infinitesimal variation formula

9ln(p(w)?)

du = o

But if dim M is odd, then e,/» = 0; cf. [10 (Lemma 1.7.7)].
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5.3. Theorem. Suppose that (C*(E),d;) is a deformation of an el-
liptic complez over a closed Riemannian manifold M defined for values
of a parameter t in an interval —e < t < €. Fiz a Hermitian metric on
the vector bundles £ = &&; . Let p(t) denotes the value of the analytic
torsion for each value of the parameter t € (—¢,€). Let x be the Euler
number of the deformation defined with respect to the origin t = 0 (cf.
Definition 2.7 and the remark afterwards). Then the function

p(t) - [t1X

is real analytic in a neibourhood of the origin t € (—4,6). Thus the Eu-
ler number x determines completely the local singularity of the analytic
torsion. ' ,

Proof. Consider the parametrized spectral decomposition given by
theorem 3.9, p. 392 of Kato [12] applied to the Laplacians A;(¢) for
1=0,1,...,N. The eigenvalues A; ;(t) (where 7 denotes the dimension,
t=0,1,...,N and j numerates the eigenvalues j = 1,2,...) can be
partitioned into three groups: (i) all eigenvalues satisfying A, ;(0) # 0;
(ii) those which vanish for ¢ = 0 but are not identically zero; (iii)
identically zero eigenvalues. Eigenvalues of the type (iii) do not appear
in the zeta-functions and so they do not influence the torsion p(t). Thus
the i-dimensional zeta-function (;(t, s) can be represented as a sum of
two terms

Gty ) = Pt ) + Pty 9)

incorporating the eigenvalues of type (i) and (ii) correspondingly. The

ac(t, 5)

contribution of the first zeta-function |s=0 into the analytic

torsion gives a nonzero factor analytically depending on t. Here we use
the following well-known general fact: If

P, : C®(€) = C®(€), te (a,b)

is a family of invertible elliptic self-adjoint positive pseudo-differential
operators of order m > 0 (which does not depend on t), then the zeta-
function determinant :

Det(P,) = exp(—('(0, P;))

is a real analytic function of ¢ € (a,b). We refer to [9 (p. 373)] and [18§]
for a proof (even in the situation with weaker assumptions).
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For the second zeta-function (which is finite) we have
d ~
—(2(t,8)smo = —In ] A (1),
ds 7j=1

where A; 1(t), Ai2(t), .., A v, (t) are all eigenvalues of type (ii). Then we
may write '

=z

)\i’j(t) = Ci(t) . tai,

1

.
1l

where ¢;(t) is a nonvanishing analitic function, and ¢; coincides with
the dimension of the following space |

dim(CI(A(OC™®(&)))/A(OC™(E))),

(as it was shown in the proof of Theorem 3.2). Now Proposition 4.2
gives
o; =dim X + dim Y*
= (dim 7* + dim ¢*~') + (dim 7*** + dim o)

= 2(dim 7* 4+ dim 7).
Substituting this into the formula defining the analytic torsion we get

p(t) = [tI7*F (),

where F(t) is a nonzero function which is analytic in a neigbourhood
of t =0.

6. Torsion of spectral sequence of deformation

6.1. Theorem. Suppose that (C>°(£),d;) is a deformation of an
elliptic complez defined for (—e < t < €). Then there exists a spectral
sequence E¥, r > 1 with the following properties:

(1) The initial term E} of the spectral sequence equals to the coho-
mology of the original undeformed elliptic complex

E; = HY(C®(€),db);
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(2) The differentials of the spectral sequence
d,: Er - Ext

have degree one and depend only on the derivatives of order 1 <1 <r
with respect to the parameter t of the differential operator

dy : C®(E) = C=(£).

-

In particular, the first differential of the spectral sequence is given by

. L d, .
the action of the first derivative ( t)|t=0 on the harmonic forms of

the undeformed operator dy. (3) For large r all the differentials of the
spectral sequence vanish and the limit term E?  is isomorphic to the
cohomology of the elliptic complex H*(C™(£),d,) for generic t close to
the origin —6 <t < 6, t £ 0.

Proof. Consider the germ-complex of the deformation; cf. 2.5. For
r > 0 denote by Z! the set of all holomorphic germs f € OC>(&;)
satisfying df € t"OC>=(€;41). Then, following the usual technique of
constructing sepectral sequences, ore defines

B = 22, +0dzY)

and the differential
d,: B - B

to be the homomorphism induced by the action of ~"d on Z:. Thus it
follows that
H*(E,,d,) ~ E;,,

i.e., one gets a spectral sequence.

For r = 1 the space Z! consists of germs of curves f € OC>(&;)
such that f(0) € ker[dy : C*°(&;) = C*®(£;11)] while Z§ coincides with
the whole OC>(£;); now, from the definition above we obtain that the
initial term F; can be identified with the cohomology of the original
undeformed complex.

Suppose that

dt :d0+t0'1 +t20'2 + ...

is the Taylor expansion of the differential operator (boundary homo-
morphism) of the elliptic complex, where o; belong to @; Diff;(£;, £;11);
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i.e., they are first order partial differential operators. Then the action
of the differential d,. of the spectral sequence on an element of the group
E:, represented as the coset containing some f € Z!, can be found as
follows. Let f(t) = fo+tfi+t2f,+... be the Taylor expansion of f(¢).
Then (since f € Z?)) the following r equations

dofi +> 0ifii; =0, for i=0,1,...,r—1
i=1 .

have to hold. Note that the coset of f in E’ depends only on the first
term f, of the above expansion (since any element f in Z% with fo =0
would belong to tZ¢_,). According to the definition above, the image
of the coset represented by f under the differential d, is represented by
an element of Z:+! having the first term

T
> 0ifrje
=1

Thus we see that only the operators o; with j = 1,2,...,r take part
in the description of d,. In the case r = 1 the above formula becomes
just o1 fo. ‘

The finiteness statement of the theorem follows from the fact that
the initial term is finite dinemsional.

To understand the structure of the limit of our spectral sequence we
are going to apply again the theorem on perturbations of self-adjoint
operators due to T. Kato [12 (p. 392)]. As it has been mentioned
in the proof of Theorem 3.2, the parametrized spectral decomposition
{Pn(t); An(t) }n>1 given by this theorem may contain only finitely many
terms with A,(t) = 0. We may assume that the eigenfunctions and
eigenvalues are numerated in such a way that \,({) =0for 1 <n < N
and A,(t) # 0 for n > N. Then for r large we easily see that any
f € Z} must belong to the free O-submodule A* of OC™(E;) generated
by ¢n(t)’s with 1 <n < N. Then from the definition of E’ we get that
for large r the group E: is precisely A*/tA%; thus the limit term E?
can be identified with the space of harmonic forms of dimension i for
all generic values of the parameter ¢ close to 0, £ # 0.

6.2. Remark. The above spectral sequence can be also de-

scribed entirely in terms of the cohomology of the germ-complex; cf.
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2.5. If Ft denotes the free part of the j-dimensional cohomology mod-
ule H*(OC*(€),d) and 7* denotes its torsion part, then the r-th term
E?} of the spectral sequence is isomorphic to

Ei ~ F/tF o Tt/ [trt + (o] ® (7). /(7Y os.

Here we use the following notation: for a module 7 over the ring @ and
for a positive integer r the symbol (7). denotes {a € 7;t"a = 0}.

The differential d,. : E: — Ei*! vanishes dn the first and the second
summands of the above decomposition and maps the third summand of
the decomposition of E? into the second summand of the decomposition
of Ei*! via the obvious homomorphism

(Tz‘+1)r/(7_i+1)r_1 - Ti+1/[t7_i+1 + (Ti+1)r—1]

induced by the inclusions.

This remark together with some elementary calculations gives the
following.

6.3. Proposition. In the situation of Theorem 6.1 suppose that ..
denotes the secondary Euler characteristics of the term E* of the above
spectral sequence, i.e.,

X, = Z(—l)ii dim Ef, where r=1,2,3,...,00.
i=1
Then the Euler number x of the deformation of the elliptic complez
equals

(o ¢]
X = 3 [Xr — Xool-
r=1

The last formula we understand as X [x. — X], where N is a
sufficiently large number.

6.4. In the next subsection we are going to define a positive real
number ¢ which measures the torsion of the above spectral sequence.

First, let us recall a few general facts about determinants and volume
forms and fix notation. If V is a vector space, A(V) will denote the
determinant line of V which is A®(V), where n = dimV. Nonzero
elements of the determinant line A(V) are called volume forms on V.
If a,b € A(V) are two volume forms, then a = Ab for some nonzero
number ); this relation we will write as A = a/b.
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The determinant line of a graded vector space V = @V; (we assume
here that only finitely many of V;’s are nonzero) is defined as

A(V) = @A(V;) D’

the inverse of a 1-dimensional vector space is understood as the dual
space, and the product in the previous formula denotes the tensor prod-
uct. The determinant line of a direct sum of graded vector spaces is
canonically isomorphic to the product of the determinant lines; deter-
minant line of a zero vector space is defined to be C.

If V is a cochain complex and H is its cohomology, there is a canon-

ical isomorphism
ov : A(V,) = A(H,).

We will describe the homomorphism ¢y in the case where the complex
V has the form
0— V4 4 V,—=0

with d an isomorphism. Let v; € A(V;) be two volume forms, where
i=3—1, j. Let v} € A(V;*) = A(V;)* be the dual volume form. Then

by (v) = det(d)V .1,

where 1 € C is the canonical element in C = A(H), and det(d) is
the determinant of any matrix representing the homomorphism d with
respect to a pair of basises of V;_; and V; realizing the volume forms
v;_1 and v; respectively. Here v denotes the following element of the
determinant line A(V):

v — {’Uj_l’l);, lf] is Odd,

vj_;v;, if j is even.

6.5. Let A(E?) denote the determinant line of the spectral sequence
E,. constructed in 6.1 considered as a graded vector space:

A(E}) = ®;0A(B)Y.
As it was explained in 6.4, for any r there is a canonical isomorphism

¢ ME;) = A(E] ).
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Since the initial term E; of our spectral sequence coincides with the
space of harmonic forms of the undeformed elliptic complex (C*°(£), do),
there is the canoninal volume form ¢; € A(E}) (defined up to multi-
plication by a scalar with absolute value 1) which is represented as
the wedge-product of harmonic forms. The limit term of the spectral
sequence also has a canonical volume element c,, € A(E%); it can be
represented as the wedge product of harmonic forms of (C*(€),d,) for
generic nonzero ¢ close to 0 if one identifies the limit term E7 accoding
to Theorem 6.1. Thus for large r the positive real number

0 = |[gro---odicr): cooll € Ry

does not depend on r. We will call 8 torsion of the above spectral
sequence. .

6.6. Theorem. Under the assumptions of theorem 5.3 the limit
lim;_,¢ p(¢)|t|X is equal to @ - p(0) where O denotes the torsion of the
spectral sequence associated with the deformation, and p(0) is the value
of the analytic torsion of the elliptic complex (C*(£),d;) for t = 0.

Proof. Let us use the notation introduced in the proof of theorem
5.3. The arguments described there show that the limit lim; o p(¢)[¢|X
is equal to

p(0) - Lim 12 - TT Ao (&) V™42,

where the product it taken over all nonzero eigenvalues of type (ii) (cf.
proof of Theorem 5.3) of the Laplacians. If we write

v)\i,j (t) = Vi )\i,j(t)a where Xi,j(O) 76 0, Vi > 0,

then to prove the Theorem we have to show that the torsion of the
spectral sequence 8 is given by

= [ X002

To do this we are going to use the duality relations of Proposition 4.2.
But first let us introduce the following notation.

Let h; € OC™(E;;) denote a basis over O for the space of harmonic
forms of the germ-complex, Ahj = (. It is a finite set; we may construct
h;’s in such a way that they are orthonormal with respect to the scalar
product (3).
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Let f; € OC*(£;,) denote a finite set of germs satisfying the follow-
ing conditions:

(a) they are orthonormal with respect to the scalar product (3);

(b) they are eigenvectors of the operator dé:

JS(fj) = p;f where u; € 0, N} #0, p;(0)=0;

in particular, all f; belong to €(d6(OC>(E;,)));
(c) for any fixed ¢ the cosets of {f;|¢; = i} generate the O-module

X' = edb(0C™(£)))/db(OC™(E:)).

The existence of such set of curves f; follows easily from the paramet-
rized spectral decomposition; cf. §3. Now, we can write

pi(t) = t7E,(t), where »; >0 and 7,;(0) # 0.

Note that all numbers v; are even and fi;(0) are positive; this fact
follows from the positivity of the Laplacians.
Let g; denote

g5 = (u3) "V 28 ;.

Here the existence of a smooth square-root u;/ ? follows from the posi-
tivity mentioned above. In fact g; is a smooth curve, i.e., an element of
OC*(&;;-1); it follows from (g, g;) = 1 where the scalar product here
is given by (3). On the other hand SJgj = p;g;. Thus the set of g;’s
forms an orthomormal family, which is orthogonal to {h;} and {f;}.
Moreover the cosets of g;’s with the dimension ¢; = 7 fixed generate the
O-module

Y = €(3d(0C™(E;-1))) 6d(OC™(Ei-r)).

Thus we obtain that the germs {f;,9;} comprise all eigenvalues of
type (ii) and that each eigenvalue u; appears twice - once in dimension
i; as the eigevalue of f; and another time in dimension i; — 1 as the
eigenvalue of h;. Hence, from the remark in the beginning of the proof
it follows that to finish the proof we are left to show that

(13) 0 = [[m©0)V7.
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Consider now the spectral sequence E,. Its initial term E; coin-
cides with the set of harmonic forms of the undeformed elliptic com-
plex. Thus we may think of E; as being the vector space generated
by {h;, f;,9;} which we will view now as abstract symbols. Since the
differential d, of the spectral sequence is given by t~"d we obtain the
following: '

(a) according to the construction of the spectral sequence desribed
in the proof of Theorem 6.1, the differential d, vanishes on all elements
h; and f; for all r;

(b) the action of the differential d, on an element of the form g; is
given by the formula:

0, if 2r < vy,
d. (gr) =93 1/2 . ’
}LJ(O) fj) if 2r = vj.
In order to justify the last formula, note that
dr(9;) = t7"dgslimo = t " dp; (1) 7?8 flemo = (75" leo fi-

Thus, we see that the term F,. of the speétral sequence is the vector
space spanned by all symbols {h;} and by the symbols

Note also that each term of our spectral sequence has a natural metric,
and the basis above is in fact orthonormal with respect to this metric.
Thus one easily obtain (13) by computing the torsion of the spectral
sequence by counting the determinants.

7. Deformations of flat vector bundles

7.1. Let M be a closed Riemannian manifold of dimension n and
let £ be a Hermitian vector bundle over M. It is well-known that
to specify a flat structure on & (i.e., a representation of £ as a vector
bundle with descrete structure group) it is equivalent to fix a flat linear
connection on &

V: ANM;E) - AMTY(ME), k=0,1,2,.., Vi =0.

We want to emphisize that considering flat Hermitian vector bun-
dles, we do not suppose in general that the connection V preserves the
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Hermitian structure on £. V is called unitary connection if it preserves
the Hermitian metric on £, or, in other words, if the Hermitian metric
on & if flat.

7.2. By a deformation of the flat vector bundle consisting of the
data (£, V) described above, we will understand a one-parametric fam-
ily V, of flat linear connections,

V:: ANM;E) - AMH(M;E), k=0,1,2,.., V=0

defined in a neighbourhood of zero —e < t < € and satisfying V, = V.
The Hermitian structure on £ is supposed to be independent of ¢. The
deformation V; is said to be unitary if all connections V, are unitary.

The precise value of the number ¢ will be of no importance to us;
thus we are actually interested in studying germs of the one—pa.ra.metrlc
families V,.

Any such deformation determines in an obvious way a deformation
of the twisted De Rham complex

- AM(M;E) X AR (MG E) Ly AM(M;E) —

which can be considered as an instance of deformations of elliptic com-
lexes as in §2.2. Our goal in this section is to review a result of [8] which
shows that in the case of deformations of twisted De Rham complex the
general notions of O-cohomology, the Euler number of the deformation
x and others can be expressed through purely homological invariants
determined by the deformation of the monodromy representation. We
will also observe that there are some duality relations for the torsion
part of the O-cohomology.

7.3. Deformation of the monodromy representation.  Sup-
pose that a deformation of flat vector bundle (£,V,), ¢ € (—¢,¢) is
given. Fix a base point z € M.

For any value of the parameter ¢ the flat connection V, determmes
the monodrony representation

(14) ke = m(M,z) - GLc(E), —e<t<e

where &, is the fiber above z. It is defined by the usual precedure of
"analytic continuation” along loops which start and finish at z.

Let V' denote the set of germs of holomorphic curves in &, (observe,
that V' = O&, in the notation of §2.3). V is a free O-module of rank
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m = dim&,. Then the family of representations (14) defines a single
representation

(15) k: 1 — GLo(V).
which is given by

(k(g) - a)(t) = rme(9)(a(t)), —e<t<e

forgen, a€eV=0&, a:(—¢e€—E,.

Thus, via the homomorphism (15) one may view V as a left O[n]-
module; this module V' we call deformation of the monodromy repre-
sentation determined by the deformation of the flat bundle.

On the other hand, one may view V as a local coefficients system
over M and consider the cohomology of this local system. Recall that
the cohomology of M with coefficients in V' is by definition

HY(M;V) = H'(Homgu(C.(M),V)),

where C, (M ) is the singular (or simplicial) chain complex of the univer-
sal covering M of M. The fundamental group = acts freely on M from
the left. This cohomology H*(M; V) is a finitely generated mudule over
0.

7.4. Theorem ([8]). There is a canonical O-isomorphism between
the cohomology H'(M,V) of the local system determined by the defor-
mation of the monodromy representation and the cohomology of the
germ-complez (cf. §2.5) of the deformation of the twisted De Rham
complezx.

This statement is a version of the De Rham theorem, and the stan-
dard proof using fine resulutions of sheaves can be adopted to this case.
This is shown in the proof of Proposition 4.5 in [8], where it is assumed
that the deformation V; is unitary. This assumption (although impor-
tant for other purposes of the paper [8]) is irrelevant for Proposition
4.5 and is not used in its proof.

7.5. Let A = C[r] denote the group ring. V can be considered
as a A — O-bimodule (i.e., as left A-module and right O-mudule) and
by Theorem 7.4 this structure determines the cohomology of the germ-
complex. One can describe V as A — O-bimodule in the following way.
V has an infinite decreasing filtration by A — O-submodules

VovioV,DVzD..., where V; =tV
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such that all factors
Vi/Vigi = &,

are identical and isomorphic to the original (undeformed) monodromy
representation, i.e., the monodromy representation corresponding to
V. Thus V' can be obtained as the result of a chain of extensions and
the way how these extensions are built is determined by the actual type
of the deformation.

Suppose that V is flat as a A-module (this assumption is actually
satisfied in many examples). Then one can compute the O-torsion
submodules 7° of H*(M; V) in the following way. Denote 7{,, = ker[t" :
Hi{(M;V) = H"(M;V)]. Then H(M;V) = H*(M;A) ®, V and

(16) T(ir) ~ Tory (H'(M;A); V/E'V).
For large r this gives a formula for 7¢. For r = 1 we obtain
(17) Ty = Tor, (H(M; A); ),

where &, is regarded as a left A-module via the monodromy represen-
tation of V. This shows, in particular, that T(il) depends only on V,
and not on the deformation.

7.6. Proposition. For a unitary deformation of a flat vector bundle
(E,V:), tE€(—€¢€) over a closed n-dimensional manifold M there are
isomorphisms of O-modules

(18) Har'* ~ Har"™, A A i=1,2,....

In particular, it follows that if the dimension n is even, then the
Euler number x of a unitary deformation of a flat vector bundle over
M wvanishes. For n odd, n = 2l — 1, the Euler number of a unitary
deformation is equal to

x = (=D{dim™ +2 YZi(-1)idim7?, and thus

(19) X =7"( mod 2).

Note that the fact that x = 0 if n is even and the deformation is
unitary follows from Theorem 5.3 and the theorem of Ray and Singer
[RS] stating that in this situation the analytic torsion vanishes.
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Proof. Consider the parametrized Hodge decomposition
(20) OA‘i(M;S) = Har' @Cl(d(OA" 1 (M; E))) ® CL(EOQO AT (M; E))
given by Theorem 3.2. Because of the formulars

(21) ok — (_l)i(n—i) and 3 = (_l)n(i+l)+1 *J*’
the star operator * maps Har’ onto Har"™*; on the other hand * ap-
plied to the second term €I(d(OA**(M;E))) maps it onto the third
term €1(6OA™~"*1(M; £)) isomorphically and vise versa. Thus the star
operator induces isomorphisms 7* ~ "% which together with (c) of
Proposition 4.2 prove our statement.

Note that the Hodge star operator

x 1 OAY(M;E) - OAH(M;E)

is defined on the curves pointwise: (xa)(t) = x(a(z)) for a : (—e¢,€) =
AY(M;€E) and t € (—¢,€). It depends only on the Riemannian metric
on M. \

7.7. Dual connection. The material of this subsection is related
to {2 (p.121)], and [5 (p. 62)]. Consider a non-unitary flat connection V
on a Hermitian vector bundle £ over M. Then the first of the relations
(21) still holds while the second fails. More precisely, the scalar product
on the space of differential forms with values in £ is given by

(w,w') = /Mw A *w',

where , :
A Ai(M;S) ®Aj(M;8) — Ai“(M)

is the Hermitian wedge-product which uses the Hermitian metric £ ®
£ — C as the bundle map. Let Herm(£) denote the vector bundle
of self-adjoint endomorphisms of &; it is a subbundle of End(£). The
covariant derivative of the Hermitian metric on £ is a 1-form on M
with values in the bundle of Hermitian metrics on £; it is however
more convenient to use the given metric on £ to view this covariant
derivative as a 1-form

v € AY(M;Herm(£)).
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This form v is defined by the property that
(22) d(s,s') = (Vs,s") + (s, Vs') +v(s) A s

holds for any pair of sections s, s’ of £.
Then for forms w,w' € A*(M; ) with values in £ we have

(23) dwAw')=VoAw + (-1)¥wA Vo' +v(w) A,

where v(w) € Al“I*1(M; £) is obtained by the wedge product of differ-
ential forms v and w, which uses the canonical pairing of vector bundles
Herm(£) ® £ — £. Note also that the last term in (23) can be written
as

v(w) Aw' = (=D)lw A v(w).

Thus, V' = V + v is a connection on &; we will call V’ the connection
dual to V.

Suppose that V is flat. Then locally, over an open set U C M the
vector bundle £ has a basis consisting of flat sections s;, sq,...,5m,; let
us write

(8iy85) = hyj and v(s;) = Zwijsj,
J

where H = (hy;) and T = (wi;) are matrices of functions and 1-forms
on U respectively. Thus (22) gives

(24) T = H~! o dH.

The dual connection is also flat (V')? = 0. To show this we may use
local coordinate system as above. The curvature of the dual connection
V' is represented by the matrix of 2-forms dY + Y2; the fact that the
last matrix is zero follows easily from (24).

This procedure of finding the dual connection is involutive: the con-
nection dual to V' is the original connection V.

Another property of the dual connection: a flat connection V is
unitary if and only if it coincides with its dual V', i.e., V = V',

Using the dual connection we may rewrite (23) in the form

(25) dwAW') =Vw A + (-1)lw A V' (W').
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The equality (25) implies that the adjoint of the connection V* (which is
defined by the identity (V*w,w') = (w, Vw')) can be ezpressed through
the star operator and the dual connection by the formula

(26) Ve = (1M ¥ s w for we AMM;E).
There is also a similar formula for the adjoint of the dual connection:
(27) V™= (-1)"PD+ 4 Txw for we AP(M;E).

General duality relations. Suppose that (£, V,) is a deformation
of a flat vector bundle over an n-dimensional manifold M, where ¢t &€
(—€,€). Consider the family of dual connections V}. We will denote
by 7° and 7'° the O-torsion submodules of the original and the dual
deformations correspondingly. Similarly, x and x’ will denote the Euler
numbers of the above deformations and so on.

7.8. Proposition.. The following O-isomorphisms hold

Har’ ~ Har™ ", o~ T
for alli=1,2,... In particular, x = (—1)"*x'.

Proof. This follows from relations (26) and (27) and the parametriz-
ed Hodge decomposition of Theorem 3.2.

8. Some examples

8.1. Example 1: Alexander modules. Here we will consider de-
formations of flat line bundles whose monodromy representations have
some "integrality” property. More precisely, we will consider mon-
odromy representations which factor through a fixed homomorphism
onto an infinite cyclic group. In this situation any analytic curve on
the punctured plane C* determines naturally an analytic family of rep-
resentations. We will show that in this case the torsion modules of
the O-cohomology modules can be described in terms of the Alexander
modules.

8.1.1. Let M be a closed Riemanian manifold of dimension n and
let ¢ : m (M) — J be a fixed epimorphism. Here J = (a) denotes an in-
finite cyclic group (written multiplicatively) with generator a. Given a
point on the punctured complex plane 3 € C* = GL(1), one constructs
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a 1-dimensional representation of J such that a — ; composed with
¢ it gives a representation of m; (M). Therefore, any analytic curve
B : (—€,€) = C* determines analytic family of representations

ket m (M) - GL(1) =C, t € (—e,¢€),
by the rule
re(g) = B(), if ¢(g) =d',  where g€ m(M).

We will denote ¢ = 8(0) and will assume that the derivative 58'(0) # 0
is nonzero.

According to our general construction in §7.3, the above family of
representations determines a single representation

k:m (M) = GLo(1) = O*.

The latter can be described as follows. Let A = C[J] = Cla,a™}]
be the group ring of J with complex coefficients. Consider the ring
homomorphism % : A — O which is defined by a —~ 3(¢). Then
K=1o¢.

The homomorphism ¢ allows to regard O as a A-module; this module
we will denote Oy since it depends on the choice of the curve 8. In the
following lemmas we will observe some homological properties of Op.

8.1.2. Lemma. Oy is flat as a A-module.

Proof. First note that ¢ is a monomorphism. On the other hand
the ring O has no zero divisors and thus Og has no A-torsion. Since A
is a principal ideal domain it, follows that Oy is flat.

For a A-module X we will denote by X the following submodule
Xe={z € X;(a—¢" =0 forsome [}; it will be called &-torsion
of X. (Recall that ¢ = ((0)). Note that X, is a finitely dimensional
vector space if X is finitely generated over A.

8.1.3. Lemma. Given a finitely generated A-module X, the map
X — X ®x Op which maps © € X to x ® 1, establishes an isomorp-
fism between the {-torsion submodule X, and the O-torsion submodule
of X ® Og. Thus the O-torsion submodule of X ®a Og contains a
summand of the form O/t'O for every summand A/(a — &)'A in X,.

Proof. 1t is enough to prove the Lemma assuming that X is cyclic,
i.e., X is free or isomorphic to A/(a — n)'A for some n € C and I >
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0. If X is free or X = A/(a — n)'A with  # £, then both torsion
submodules in question vanish. Now we are left with the possibility
X = A/(a — &)'A; in this case one easily checks the statement of the
lemma. :

Let M denote the covering of the manifold M corresponding to th
kernel of ¢ : 7;(M) — J. The infinite cyclic group J acts on M as
the group of covering transformations. The homology Hj(]\zf ;C) are
modules over A, called Alezander modules.

The torsion submodule of H;(M;C) can be represented as a sum of
cyclic modules

A/prA® A/pA @ -+ © A/piA,

where p. € A, r =1,2,...,k are non-zero Laurent polynomials de-
termined uniquely up to units. The product A; = p; -p,- ... pi is
called the Alezander polynomial in dimension j. It is a polynomial in
a.

8.1.4. Proposition. Suppose that a family of representations is
given by an analytic curve B : (—e,e) — C* which passes through a
point £ = B(0) € C* such that the derivative 3'(0) is not zero. Then
the dimension of the O-torsion submodule T¢ of the O-cohomology of the
deformation is equal to the mazimal power of the factor (a — &) which
divides the Alezander polynomial A;_;(a) of dimension i —1. The O-
module 7 is semi-simple if and only if the A-module H;_, (M; C)¢ is
semi-simple.

Proof. Using Theorem 7.4 and Lemma 8.2 we find that 7¢ is iso-
morphic to the O-torsion of H*(M;Op) which is given by

Hi(Homy (C,(M); O3) = H(Homy (M; A)) ®4 O = H(M; A) ®4 Op.
By Lemma 8.3 ¢-torsion H*(M;A); determines the O-torsion-in
H*(M;Og). Now, the Kuneth formula

H(Homy (M; A)) = Homy (H;(M); A) @ Ext} (H;_, (M); A)

can be used to express the £-torsion of H(M; A) through the ¢-torsion
of the Alexander module H;_,(M;C). This completes the proof.

8.1.5. From Proposition 8.1.4 it follows that the Euler number x of
any deformation, determined by an analytic curve 5 on C* as described
above, equals the order at a = £ of the rational function

H A2i—1(a)/A2i(a)7
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where £ = ((0). This fact agrees with computation of Milnor [17]
showing that the Reidemeister torsion (which is defined as a numerical
function of the representation a € C* outside the set of roots of the
Alexander polynomials of all dimensions) is given by the formula

H A22 /AZz 1 )

8.1.6. Now we will construct a precise example of a flat line bundle
with no semi-simple deformations.

Fix two integers: m > 3 and ¢ with 2 < 2 < n + 1. Consider the
following Z[a, a~'}-module

A=Z[a,a™/(a® — a+1)Z[a,a”7".

It is a module of type K in terminology of [15 (§3)]. Note that the
complexification A ® C splits as

Af(a— &)’ A@ A/(a—E)A, where £. = exp(Lin/3).

Using Theorem 9.1 of [15] we may construct an n-dimensional knot
k™ C S™*? i.e., a smooth submanifold £” with £ diffeomorphic to the
standard sphere S™, such that the fundamental group of the comple-
ment X = S™*? — k™ is infinite cyclic (we will identify it with J) and
the Alexander modules are the following:

H,(R) ~ A, forj=1
! 10, foralll<j<(n+1)/2, j#i.

Here X denotes the universal cover of X.

‘Now we want to perform a Dehn surgery along this knot. Let k™ x D?
be a tubular neighbourhood of ™ in §™*2; cut it out and replace by
D™ x S* in the standard way. As the result we obtain a closed
(n+2)-dimensional manifold M with infinite cyclic fundamental group,
71 (M) ~ J, such that the Alexander modules are given by

H,(T) ~ A, forj=1 .
! 10, foralll<j<(n+1)/2, j#i.

Thus we see that the {-torsion of the complexified Alexander module
H;(M;C)¢ is not semi-simple for £ = {.. By Proposition 8.1.4 we
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therefore conclude that the O-torsion homology module 7**! will be
not semi-simple for any curve passing through £, with nonzero velocity.
Hence the Euler numbers x of deformations corresponding to the above
curves will be distinct (here we assume that the dimension n is odd)
from the jump of the derived Euler characteristics, cf. §2.11.

Note additionally that these points &4 lie on the unit circle and so
we may find curves on the unit circle which pass through £.; the latter
would represent unitary families of representations having the above
property.

8.2. Example 2: Koszul complexes. A.Dimca and M.Saito [7]
studied deformations of Koszul complexes. It turned out that they be-
have entirely differently from deformations of elliptic complexes. Prop-
erties like Theorem 2.9, which state that the homology cannot increase
immediately, are false for Koszul complexes. '

Let P = Clz;,xs,. .., %,] be the ring of polynomials in 1, Zs, . . . , Tn-
The Koszul resolution

05235 5024 .. 50" 50

is the complex (€, d) with Q* being the set of all polynomial k-forms
in zy,Zs,...,z, and with the boundary operator d being the exterior
derivative. Thus Q° = P and every Q* is a free P-module with the
basis dz;, Adz;, A+ - Adz,,, where 4; < iy < --- < ix. Homology of this
complex is nontrivial only in dimension 0, and the complex provides a
free resolution of C.

Let f € P be a fixed polynomial. Consider the Witten’s deformation
of the Koszul complex

D;: QF - QM) Di(w) = dw + df Aw.
Note that Witten’s gauge transformation
wr—efw

does not ezist in this case because the form e/w is not polynomial. It
turns out that homology of the complex (R, D) depends on f and can
be nontrivial. It was explicitly computed by A.Dimca and M.Saito in
[7). They obtained the following answer. ’
Consider the map f : C* — C defined by the polynomial f. Then
f induces a topological fibration over a Zariski-open subset of C. Let
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F = f~1(2) denote the generic fiber, where z € C. Then the Theorem
of A.Dimca and M.Saito [7] states that

H*(Q, Dy) = H*(F,C)

for any k.
From this Theorem it follows that the homology of the deformation

Dy (w) =dw + tdf Aw

(where t is a parameter) does not depend on ¢ for t # 0, ¢t € C since
the polynomials f and ¢f have the same generic fiber.

Moreover, the deformed complex (2, D;;) may have bigger homology
than the original complex (£, d).

The simplest concrete example: let n = 1, f = z2. The generic
fiber consists of two points and so the complex (2, D;;) has nontrivial
1-dimensional homology for any ¢ # 0, while it is the 1-dimensional
homology vanishes for ¢ = 0.
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